试题
题目:
经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S
1
和S
2
,则S
1
与S
2
的大小关系是( )
A.S
1
>S
2
B.S
1
<S
2
C.S
1
=S
2
D.不能确定
答案
C
解:矩形ABCD中,AD=BC,
AO=BO=CO=DO,
∴△AOD≌△BOC(SSS),
∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,
∴△OEC≌△OFA,
同理可证,△DEO≌△BFO,
∴S
1
=S
2
.
故选C.
考点梳理
考点
分析
点评
中心对称.
根据矩形对角线相等且平分的性质,易证△OEC≌△OFA,△DEO≌△BFO,△AOD≌△BOC,即可证明S
1
=S
2
,即可解题.
本题考查了矩形对角线相等且互相平分的性质,全等三角形的证明,全等三角形面积相等的性质,本题中求证△OEC≌△OFA是解题的关键.
找相似题
(2007·晋江市质检)如图,在Rt△ABC中,斜边AB长为8
3
,直角边BC长为12,若扇形ACE与扇形BDE关于点E中心对称,则图中阴影部分的面积约为( )
如图既是轴对称又是中心对称的是( )
如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有( )
如图是一个以点A为对称中心的中心对称图形,若∠C=90°,∠B=30°,AC=1,则BB′的长为( )
给出下列说法:①平行四边形既是轴对称图形,也是中心对称图形;②关于某点成中心对称的两个三角形是全等三角形;③菱形的两条对角线将菱形分割成四个全等的直角三角形;④若将一个图形绕某点旋转和另一个图形完全重合,则这两个图形关于这点成中心对称,其中正确的说法是( )