试题
题目:
如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:(1)点E和点F,B和D是关于中心O的对称点;(2)直线BD必经过点O;(3)四边形ABCD是中心对称图形;(4)四边形DEOC与四边形BFOA的面积必相等;(5)△AOE与△COF成中心对称,其中正确的个数为( )
A.1个
B.2个
C.3个
D.5个
答案
D
解:△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,
因此点O就是·ABCD的对称中心,则有:
(1)点E和点F;B和D是关于中心O的对称点,正确;
(2)直线BD必经过点O,正确;
(3)四边形ABCD是中心对称图形,正确;
(4)四边形DEOC与四边形BFOA的面积必相等,正确;
(5)△AOE与△COF成中心对称,正确;
其中正确的个数为5个,故选D.
考点梳理
考点
分析
点评
中心对称.
由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.
熟练掌握平行四边形的性质和中心对称图形的性质是解决此题的关键.
找相似题
(2007·晋江市质检)如图,在Rt△ABC中,斜边AB长为8
3
,直角边BC长为12,若扇形ACE与扇形BDE关于点E中心对称,则图中阴影部分的面积约为( )
如图既是轴对称又是中心对称的是( )
如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有( )
如图是一个以点A为对称中心的中心对称图形,若∠C=90°,∠B=30°,AC=1,则BB′的长为( )
给出下列说法:①平行四边形既是轴对称图形,也是中心对称图形;②关于某点成中心对称的两个三角形是全等三角形;③菱形的两条对角线将菱形分割成四个全等的直角三角形;④若将一个图形绕某点旋转和另一个图形完全重合,则这两个图形关于这点成中心对称,其中正确的说法是( )