试题

题目:
青果学院如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E的位置,则∠1+∠2=
110°
110°
度.
答案
110°

解:在△BCD中,∠BCD=∠ACE=40°,BC=CD,
∴△BCD为等腰三角形,
∴∠1=
1
2
(180°-40°)=70°,
∵∠BEC为△ACE的外角,
∴∠2+∠DEC=∠ACE+∠A,而∠DEC与∠A为对应角,
∴∠2=∠ACE=40°,
∴∠1+∠2=70°+40°=110°.
故答案为:110°.
考点梳理
旋转的性质.
由旋转的性质可知AC=EC,BC=DC,∠BCD=∠ACE=40°,在△BCD中,由内角和定理求∠1,根据外角定理可求∠1.
本题考查了旋转的性质的运用.旋转前后对应边相等,对应点与旋转中心的连线相等,且夹角为旋转角.
计算题.
找相似题