试题
题目:
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
A.2
B.3
C.4
D.1.5
答案
A
解:∵△ABC以点O为旋转中心,旋转180°后得到△A′B′C′,
∴△ABC≌△A′B′C′,
∴B′C′=BC=4,
∵D′E′是△A′B′C′的中位线,
∴D′E′=
1
2
B′C′=
1
2
×4=2.
故选A.
考点梳理
考点
分析
点评
旋转的性质;三角形中位线定理.
先根据图形旋转不变性的性质求出B′C′的长,再根据三角形中位线定理即可得出结论.
本题考查的是图形旋转的性质,熟知旋转前、后的图形全等是解答此题的关键.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )
(2009·漳州)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是( )