试题
题目:
如右图,取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为α(0°<α≤45°),得到△ABC连接BD,∠DBC′+∠CAC′+∠BDC=
105°
105°
.
答案
105°
解:连接CC′,在△BDO和△OCC′中,∠BOD=∠COC′,
∴∠1+∠2=∠3+∠4,
∴∠DBC′+∠CAC′+∠BDC=∠2+∠α+∠1=∠3+∠4+∠α,
=180°-∠ACD-∠AC′B,
=180°-45°-30°=105°,
故答案为105°.
考点梳理
考点
分析
点评
专题
旋转的性质.
连接CC′,在△BDO和△OCC′中,利用三角形内角和定理得到∠1+∠2=∠3+∠4,所以∠DBC′+∠CAC′+∠BDC=∠2+∠α+∠1=∠3+∠4+∠α=180°-∠ACD-∠AC′B=180°-45°-30°=105°.
本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等,也考查了三角形的内角和定理,难度适中.
应用题.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )