试题
题目:
正方形ABCD中,∠EAF=45°,BE=3,DF=4,则EF的长是
7
7
.
答案
7
解:如图,把△ABE逆时针旋转90°得到△ADG,
∴BE=GD,AE=AG,
∵∠EAF=45°,
∴∠FAG=90°-45°=45°,
∴∠EAF=∠FAG,
在△AEF和△AGF中,
AE=AG
∠EAF=∠FAG
AF=AF
,
∴△AEF≌△AGF(SAS),
∴EF=GF,
即EF=GD+DF,
∴EF=BE+DF,
∵BE=3,DF=4,
∴EF=BE+DF=7,
故答案为7.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质;旋转的性质.
把△ABE逆时针旋转90°得到△ADG,根据旋转的性质可得BE=GD,AE=AG,再根据∠EAF=45°求出∠FAG=45°,然后利用边角边定理证明△AEF与△AGF全等,根据全等三角形对应边相等可得EF=GF,即EF=GD+FD,即可证明EF=BE+DF=7.
本题考查了正方形四边均相等,且各内角均为直角的性质,考查了全等三角形的证明,本题把△ABE逆时针旋转90°,构建全等三角形△AEF与△AGF是解题的关键.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )