题目:
(2009·随州)如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;
(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.
答案
解:

(1)BG=AE,
证明:∵△ABC是等腰直角三角形,AD⊥BC,
∴BD=DA,
又∵正方形DEFG中:GD=DE,∠GDB=∠EDA;

∴Rt△BDG≌Rt△ADE;
∴BG=AE;
(2)成立:
证明:连接AD,
∵Rt△BAC中,D为斜边BC的中点,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°,
∵EFGD为正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,

∴∠BDG=∠ADE,
在△BDG和△ADE中,
∴△BDG≌△ADE(SAS),
∴BG=AE;
(3)由(2)可得BG=AE,当BG取得最大值时,AE取得最大值;
分析可得:当旋转角度为270°时,BG=AE最大值为1+2=3,
此时如图:AF=
.
解:

(1)BG=AE,
证明:∵△ABC是等腰直角三角形,AD⊥BC,
∴BD=DA,
又∵正方形DEFG中:GD=DE,∠GDB=∠EDA;

∴Rt△BDG≌Rt△ADE;
∴BG=AE;
(2)成立:
证明:连接AD,
∵Rt△BAC中,D为斜边BC的中点,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°,
∵EFGD为正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,

∴∠BDG=∠ADE,
在△BDG和△ADE中,
∴△BDG≌△ADE(SAS),
∴BG=AE;
(3)由(2)可得BG=AE,当BG取得最大值时,AE取得最大值;
分析可得:当旋转角度为270°时,BG=AE最大值为1+2=3,
此时如图:AF=
.