试题
题目:
(2012·荆州)如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠
BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.
(1)请根据题意用实线补全图形;
(2)求证:△AFB≌△AGE.
答案
解:(1)画图,如图;…(4分)
(2)证明:由题意得:△ABC≌△AED.…(5分)
∴AB=AE,∠ABC=∠E.…(6分)
在△AFB和△AGE中,
∠ABC=∠E
AB=AE
∠α=∠α
∴△AFB≌△AGE(ASA).…(9分)
解:(1)画图,如图;…(4分)
(2)证明:由题意得:△ABC≌△AED.…(5分)
∴AB=AE,∠ABC=∠E.…(6分)
在△AFB和△AGE中,
∠ABC=∠E
AB=AE
∠α=∠α
∴△AFB≌△AGE(ASA).…(9分)
考点梳理
考点
分析
点评
翻折变换(折叠问题);全等三角形的判定;旋转的性质.
(1)根据题意画出图形,注意折叠与旋转中的对应关系;
(2)由题意易得△ABC≌△AED,即可得AB=AE,∠ABC=∠E,然后利用ASA的判定方法,即可证得△AFB≌△AGE.
此题考查了折叠与旋转的性质以及全等三角形的判定与性质.此题考查了学生的动手能力,注意掌握数形结合思想的应用,注意折叠与旋转中的对应关系.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )