试题

题目:
青果学院(2011·朝阳区二模)已知:如图,正方形ABCD的边长为6,将其绕点A顺时针旋转30°得到正方形AEFG,FG与BC相交于点H.(1)求证:BH=GH;
(2)求BH的长.
答案
青果学院(1)证明:连接AH,
依题意,正方形ABCD与正方形AEFG全等,
∴AB=AG,∠B=∠G=90°.(1分)
在Rt△ABH和Rt△AGH中,
AH=AH,AB=AG,
∴Rt△ABH≌Rt△AGH.(2分)
∴BH=GH.(3分)

(2)解:∵∠1=30°,△ABH≌△AGH,
∴∠2=∠3=30°.(4分)
在Rt△ABH中,∵∠2=30°,AB=6,
∴BH=
AB
tan30°
=
6
3
3
=2
3

青果学院(1)证明:连接AH,
依题意,正方形ABCD与正方形AEFG全等,
∴AB=AG,∠B=∠G=90°.(1分)
在Rt△ABH和Rt△AGH中,
AH=AH,AB=AG,
∴Rt△ABH≌Rt△AGH.(2分)
∴BH=GH.(3分)

(2)解:∵∠1=30°,△ABH≌△AGH,
∴∠2=∠3=30°.(4分)
在Rt△ABH中,∵∠2=30°,AB=6,
∴BH=
AB
tan30°
=
6
3
3
=2
3
考点梳理
旋转的性质;全等三角形的判定与性质;正方形的性质.
(1)连接AH,可证得Rt△ABH≌Rt△AGH,故可证得结论;
(2)利用上题证得的结论求得∠2=∠3=30°,在Rt△ABH中求得BH的长即可.
此题主要考查旋转变换的性质、全等三角形的判定及性质及正方形的性质,作出辅助线是关键.
综合题.
找相似题