试题
题目:
(2011·丰台区一模)已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:
(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=
3
3
3
3
;
(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=
3
6
-3
2
3
6
-3
2
;
(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.
答案
3
3
3
6
-3
2
解:(1)∵a=b=3,且∠ACB=60°,
∴△ABC是等边三角形,
∴OC=
3
3
2
,
∴CD=
3
3
;(1分)
(2)
3
6
-3
2
;(2分)
(3)以点D为中心,将△DBC逆时针旋转60°,
则点B落在点A,点C落在点E.连接AE,CE,
∴CD=ED,∠CDE=60°,AE=CB=a,
∴△CDE为等边三角形,
∴CE=CD.(4分)
当点E、A、C不在一条直线上时,
有CD=CE<AE+AC=a+b;
当点E、A、C在一条直线上时,
CD有最大值,CD=CE=a+b;
只有当∠ACB=120°时,∠CAE=180°,
即A、C、E在一条直线上,此时AE最大
∴∠ACB=120°,(7分)
因此当∠ACB=120°时,
CD有最大值是a+b.
考点梳理
考点
分析
点评
旋转的性质;三角形三边关系;等边三角形的性质.
(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;
(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;
(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.
本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )