试题
题目:
如图,△ABC按顺时针方向旋转一个角后成为△ADE.已知∠B=93°,∠AED=48°,则旋转角等于
39
39
°.
答案
39
解:∵△ABC按顺时针方向旋转一个角后成为△ADE,
∴△ABC≌△ADE,
∴∠B=∠ADE,
∵∠B=93°,∠AED=48°,
∴∠DAE=180°-∠ADE-∠AED=180°-93°-48°=39°,
即旋转角为39°.
故答案为:39.
考点梳理
考点
分析
点评
旋转的性质.
根据旋转变换只改变图形的位置不改变图形的形状与大小可得△ABC和△ADE全等,根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的内角和定理求出∠DAE,然后根据对应边AC、AE的夹角为旋转角解答即可.
本题考查了旋转的性质,主要利用了旋转角的确定,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )