试题
题目:
(2008·门头沟区二模)如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.
(1)请在图中连接两条线段(正方形的对角线除外).要求:①所连接的两条线段是以图中已标有字母的点为端点;②所连接的两条线段互相垂直.
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为
4
3
3
c
m
2
,旋转的角度n是多少度?请说明理由.
答案
解:(1)AO⊥DE.
证明:∵在Rt△ADO与Rt△AEO中,
AD=AE
AO=AO
,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠OAE(即AO平分∠DAE),
∴AO⊥DE(等腰三角形的三线合一).
(2)n=30°.
理由:连接AO,
∵四边形AEOD的面积为
4
3
3
,
∴三角形ADO的面积
AD×DO
2
=
2
3
3
,
∵AD=2,
∴DO=
2
3
3
,
在Rt△ADO中,
∵tan∠DAO=
DO
AD
=
3
3
,
∴∠DAO=30°,
∴∠EAD=60°,∠EAB=30°,
即n=30°.故旋转的角度n是30°.
解:(1)AO⊥DE.
证明:∵在Rt△ADO与Rt△AEO中,
AD=AE
AO=AO
,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠OAE(即AO平分∠DAE),
∴AO⊥DE(等腰三角形的三线合一).
(2)n=30°.
理由:连接AO,
∵四边形AEOD的面积为
4
3
3
,
∴三角形ADO的面积
AD×DO
2
=
2
3
3
,
∵AD=2,
∴DO=
2
3
3
,
在Rt△ADO中,
∵tan∠DAO=
DO
AD
=
3
3
,
∴∠DAO=30°,
∴∠EAD=60°,∠EAB=30°,
即n=30°.故旋转的角度n是30°.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;旋转的性质.
(1)易证Rt△ADO≌Rt△AEO,得到∠DAO=∠OAE,则问题得证;
(2)四边形AEOD,若连接OA,则OA把四边形评分成两个全等的三角形,根据解直角三角形得条件就可以求出旋转的角度.
本题考查了正方形和旋转的性质,利用旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变是解题关键.
几何综合题.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )