试题

题目:
青果学院(2011·浙江模拟)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使B与D重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为
4:3
4:3

答案
4:3

解:连接DF,
青果学院
∵△BEC绕C点旋转90°使B与DC重合,得到△DCF,
∴△BEC≌△DFC,
∴∠EBC=∠FDC①,BE=DF,CE=CF=3,
在直角三角形BEC中,BE=
BC2-CE2
=4;
已知∠BCD=90°,∠BEC=90°,
∴∠EBC+∠ECB=90°,∠BCE+∠ECM=90°,
∴∠EBC=∠ECM②,
∴由①②得∠ECM=∠FDC;
又∵∠CME=∠DMF,
∴△CME∽△DMF,
∴DM:MC=DF:CE=4:3.
故答案为:4:3.
考点梳理
直角梯形;旋转的性质.
由旋转的性质易得△BEC≌△DFC,可得∠EBC=∠FDC,CE=CF=3,在直角三角形BEC中即可求得BE=4;已知∠BCD=90°,由∠EBC+∠ECB=90°,且∠BCE+∠ECM=90°,即可得∠EBC=∠ECM,则∠ECM=∠FDC;则可证得△CME∽△DMF即可得DM:MC=DF:CE即可得解.
本题考查了旋转的性质,直角梯形的性质,相似三角形的判定及性质等知识点,是一道综合性的中档题.
证明题.
找相似题