试题

题目:
青果学院在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=
1
2
∠DAB,试猜想当∠B与∠D满足
∠ABC+∠D=180°
∠ABC+∠D=180°
时,可使得DE+BF=EF.
答案
∠ABC+∠D=180°

青果学院解:当∠ABC+∠D=180°时,DE+BF=EF.理由如下:
在CB的延长线上取一点G,使BG=DE,连接AG.
∵∠ABC+∠D=180°,∠ABC+∠ABG=180°,
∴∠ABG=∠D.
在△ABG与△ADE中,
AB=AD
∠ABG=∠D
BG=DE

∴△ABG≌△ADE(SAS),
∴∠BAG=∠DAE,AG=AE,
∴∠BAG+∠BAF=∠DAE+∠BAF=∠DAB-∠EAF=∠DAB-
1
2
∠DAB=
1
2
∠DAB,
∴∠GAF=∠EAF.
在△AGF与△AEF中,
AG=AE
∠GAF=∠EAF
AF=AF

∴△AGF≌△AEF(SAS),
∴GF=EF.
∵GB+BF=GF,
∴DE+BF=EF.
故答案为∠ABC+∠D=180°.
考点梳理
旋转的性质;全等三角形的判定与性质.
在CB的延长线上取一点G,使BG=DE,由于∠ABC+∠D=180°,∠ABC+∠ABG=180°,可以得到∠ABG=∠D,再利用SAS证明△ABG≌△ADE,由此可以推出∠BAG=∠DAE,AG=AE,而∠EAF=
1
2
∠DAB,所以得到∠EAF=∠GAF,再利用SAS证明△AEF≌△AGF,然后根据全等三角形的性质就可以证明DE+BF=EF.
此题主要考查了全等三角形的判定及性质,根据题意作出与已知相等的线段,利用三角形全等是解决问题的关键.
找相似题