题目:
如图示:一幅三角板如图放置,等腰直角三角形固定不动,另一块的直角顶点放在等腰直角三角形的斜边中点D处,且可以绕点D旋转,在旋转过程中,两直角边与AB、CB的交点为G、H
(1)当三角板DEF旋转至图1所示时,你能发现线段BG和CH大小有何关系?证明你的结论.
(2)若在旋转过程中,两直角边的交点G、H始终在边AB、CB上,AB=CB=4cm,在旋转过程中四边形GBHD的面积是否不变,若不变,求出它的值,若变,求出它的取值范围.
(3)当三角板DEF旋转至图2所示时,三角板DEF与AB、BC边所在的直线相交于点G、H时,(1)的结论仍然成立吗?并说明理由.
答案
解:(1)BG和CH为相等关系,
如图1,连接BD,
∵等腰直角三角形ABC,D为AC的中点,
∴DB=DC=DA,∠DBG=∠DCH=45°,BD⊥AC,
∵∠EDF=90°,
∴∠ADG+∠HDC=90°,
∵∠BDC=∠BDA=90°,
∴∠BDG+∠ADG=90°,
∴∠BDG=∠HDC,
∴在△BDG和△CDH中,
,
∴△BDG≌△CDH(ASA),
∴BG=CH,
(2)在旋转过程中四边形GBHD的面积不变,
∵等腰直角三角形ABC,AB=BC=4cm,
∴S
△ABC=8cm
2,
∴∠A=∠C=45°,
∵G、H点适中在边AB、BC上,
∴∠A=∠DBH,
∵BD⊥AC,∠BDG=∠CDH,
∴∠BDH=∠ADG,
∵BD=AD,
∴在△BDH和△ADG中,
,
∴△BDH≌△ADG(ASA),
∵△BDG≌△CDH,
∴S
四边形DGBH=S
△BDH+S
△GDB=S
△ABD,
∵DA=DC=DB,BD⊥AC,
∴S
△ABD=
S
△ABC,
∴S
四边形DGBH=
S
△ABC=4cm
2,
∴在旋转过程中四边形GBHD的面积不变,
(3)当三角板DEF旋转至图2所示时,(1)的结论仍然成立,
如图2,连接BD,
∵BD⊥AC,AB⊥BH,ED⊥DF,
∴∠BDG=90°-∠CDG,∠CDH=90°-∠CDG,
∴∠BDG=∠CDH,
∵等腰直角三角形ABC,
∴∠DBC=∠BCD=45°,
∴∠DBG=∠DCH=135°,
∴在△DBG和△DCH中,
,
∴△DBG≌△DCH(ASA),
∴BG=CH.

解:(1)BG和CH为相等关系,
如图1,连接BD,
∵等腰直角三角形ABC,D为AC的中点,
∴DB=DC=DA,∠DBG=∠DCH=45°,BD⊥AC,
∵∠EDF=90°,
∴∠ADG+∠HDC=90°,
∵∠BDC=∠BDA=90°,
∴∠BDG+∠ADG=90°,
∴∠BDG=∠HDC,
∴在△BDG和△CDH中,
,
∴△BDG≌△CDH(ASA),
∴BG=CH,
(2)在旋转过程中四边形GBHD的面积不变,
∵等腰直角三角形ABC,AB=BC=4cm,
∴S
△ABC=8cm
2,
∴∠A=∠C=45°,
∵G、H点适中在边AB、BC上,
∴∠A=∠DBH,
∵BD⊥AC,∠BDG=∠CDH,
∴∠BDH=∠ADG,
∵BD=AD,
∴在△BDH和△ADG中,
,
∴△BDH≌△ADG(ASA),
∵△BDG≌△CDH,
∴S
四边形DGBH=S
△BDH+S
△GDB=S
△ABD,
∵DA=DC=DB,BD⊥AC,
∴S
△ABD=
S
△ABC,
∴S
四边形DGBH=
S
△ABC=4cm
2,
∴在旋转过程中四边形GBHD的面积不变,
(3)当三角板DEF旋转至图2所示时,(1)的结论仍然成立,
如图2,连接BD,
∵BD⊥AC,AB⊥BH,ED⊥DF,
∴∠BDG=90°-∠CDG,∠CDH=90°-∠CDG,
∴∠BDG=∠CDH,
∵等腰直角三角形ABC,
∴∠DBC=∠BCD=45°,
∴∠DBG=∠DCH=135°,
∴在△DBG和△DCH中,
,
∴△DBG≌△DCH(ASA),
∴BG=CH.