题目:
如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.
(1)如图1,求∠EFB的度数;
(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.
①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为
30
30
°;
②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.
答案
30

解:(1)∵∠A=30°,∠CDE=45°,
∴∠ABC=90°-30°=60°,∠E=90°-45°=45°,
∴∠EFB=∠ABC-∠E=60°-45°=15°;
(2)①∵CD∥AB,
∴∠ACD=∠A=30°,
∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,
∴∠ECB=∠ACD=30°;
②如图1,CE∥AB,∠ACE=∠A=30°,

∠ECB=∠ACB+∠ACE=90°+30°=120°;
如图2,DE∥AB时,延长CD交AB于F,
则∠BFC=∠D=45°,
在△BCF中,∠BCF=180°-∠B-∠BFC,
=180°-60°-45°=75°,
∴ECB=∠BCF+∠ECF=75°+90°=165°;
如图3,CD∥AB时,∠BCD=∠B=60°,
∠ECB=∠BCD+∠EDC=60°+90°=150°;
如图4,CE∥AB时,∠ECB=∠B=60°.