试题

题目:
青果学院如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,将△EAC逆时针旋转后能与△BAD重合.
(1)旋转中心是
A
A
点;
(2)旋转了
90
90
度;
(3)若EC=10cm,求BD的长?
答案
A

90

解:(1)∵△EAC逆时针旋转后能与△BAD重合,
∴A点即为两三角形的公共顶点,故旋转中心是A点;

(2)∵△EAC逆时针旋转后能与△BAD,
∴AE与AB重合,
∵∠BAE=90°,
∴旋转的度数为:90;

(3)由题意知EC和BD是对应线段,据旋转的性质可得BD=EC=10cm(3分)
考点梳理
旋转的性质.
(1)找出两重合三角形的公共顶点即可得出其旋转中心;
(2)根据两重合边所夹的角度即可求出旋转的度数;
(3)根据图形旋转的性质可直接进行解答.
本题考查的是图形旋转的性质,即①对应点到旋转中心的距离相等. ②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等.
探究型.
找相似题