旋转的性质.
先根勾股定理计算出BC=3,由点D是斜边AB的中点,根据直角三角形斜边上的中线等于斜边的一半得DC=DB,则∠DCB=∠B,再根据旋转的性质得∠B=∠B′,CA=CA′=4,AB=A′B′=5,∠ACB=∠A′CB′=90°,则∠B′=∠DCB,得到A′B′∥BC,所以A′B′⊥AC,利用面积法可计算出CE=
,AE=AC-CE=4-
=
,然后在Rt△A′CE中,利用勾股定理计算出A′E=
,再在Rt△AA′E中利用勾股定理可计算出AA′.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质以及勾股定理.