试题
题目:
(2007·朝阳区)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转到△ACP′的位置、如果AP=3,那么PP′的长等于
3
2
3
2
.
答案
3
2
解:AP=AP′=3,∠BAP=∠CAP′,
∵∠BAP+∠PAC=90°,
∴∠CAP′+∠PAC=90°,即△PAP′为等腰直角三角形,由勾股定理得PP′=3
2
.
考点梳理
考点
分析
点评
专题
旋转的性质.
因为△ACP′是由△ABP旋转得到的,则这两个三角形全等,根据∠BAP+∠PAC=90°所以∠CAP′+∠PAC=90°,可得△PAP′为等腰直角三角形,由勾股定理即可求解.
此题主要考查学生对旋转的性质及等腰三角形的性质的掌握情况.
压轴题.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )