答案
(1)解:∵四边形ABCD为正方形,
∴∠FAD=∠EAB=90°,AD=AB,
而AF=AE,
∴把△AFD绕点A顺时针旋转90°后得到△AEB;
(2)BE=DF且BE⊥DF.

证明:延长BE交DF于G,如图,
∵把△AFD绕点A顺时针旋转90°后得到△AEB,
∴BE=DF,∠ABE=∠ADF,
∵∠AEB=∠DEG,∠BAE=90°
∴∠ABE+∠AEB=∠ADF+∠DEG=90°,
∴∠DGE=90°,
即BE⊥DF.
(1)解:∵四边形ABCD为正方形,
∴∠FAD=∠EAB=90°,AD=AB,
而AF=AE,
∴把△AFD绕点A顺时针旋转90°后得到△AEB;
(2)BE=DF且BE⊥DF.

证明:延长BE交DF于G,如图,
∵把△AFD绕点A顺时针旋转90°后得到△AEB,
∴BE=DF,∠ABE=∠ADF,
∵∠AEB=∠DEG,∠BAE=90°
∴∠ABE+∠AEB=∠ADF+∠DEG=90°,
∴∠DGE=90°,
即BE⊥DF.