题目:
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连接D′E.
(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;
(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
答案
(1)证明:∵△ABD绕点A旋转,得到△ACD′,
∴∠DAD′=∠BAC=120°,AD=AD′.
∵∠DAE=60°,
∴∠EAD′=∠DAD′-∠DAE=120°-60°=60°,
∴∠DAE=∠D′AE.
在△DAE与△D′AE中,
| AD=AD′ | ∠DAE=∠D′AE | AE=AE(公共边) |
| |
,
∴△DAE≌△D′AE(SAS),
∴DE=D′E(全等三角形的对应边相等);
(2)解:∠DAE=
∠BAC.理由如下:
∵△ABD绕点A旋转,得到△ACD′,
∴∠DAD′=∠BAC,AD=AD′.
∴在△DAE与△D′AE中,
,
∴△DAE≌△D′AE(SSS),
∴∠DAE=∠D′AE=
∠DAD′,
∵∠BAD′=∠BAC,
∴∠DAE=
∠BAC.
(1)证明:∵△ABD绕点A旋转,得到△ACD′,
∴∠DAD′=∠BAC=120°,AD=AD′.
∵∠DAE=60°,
∴∠EAD′=∠DAD′-∠DAE=120°-60°=60°,
∴∠DAE=∠D′AE.
在△DAE与△D′AE中,
| AD=AD′ | ∠DAE=∠D′AE | AE=AE(公共边) |
| |
,
∴△DAE≌△D′AE(SAS),
∴DE=D′E(全等三角形的对应边相等);
(2)解:∠DAE=
∠BAC.理由如下:
∵△ABD绕点A旋转,得到△ACD′,
∴∠DAD′=∠BAC,AD=AD′.
∴在△DAE与△D′AE中,
,
∴△DAE≌△D′AE(SSS),
∴∠DAE=∠D′AE=
∠DAD′,
∵∠BAD′=∠BAC,
∴∠DAE=
∠BAC.