试题
题目:
如图,P为正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心将△ABC顺时针旋转使点A与点C重合,这时P点旋转到G点.
(1)画出旋转后的图形,此时△ABP绕点B旋转了多少度?
(2)请你猜想△PGC的形状,并说明理由.
答案
(1)解:如图所示,此时△ABP绕点B顺时针旋转了90°;
(2)证明:由已知可得:△ABP≌△CBG,
∴BP=BG,∠ABP=∠CBG,
CG=AP=1,
又∵在正方形ABCD中,∠ABC=90°,
即∠ABP+∠PBC=90°,
∴∠CBG+∠PBC=90°,
∴∠PBG=90°,
∴在Rt△PBG中,PG
2
=BP
2
+BG
2
=8,
又∵GC
2
=1
2
=1,PC
2
=3
2
=9,
∴PC
2
=PG
2
+GC
2
,
∴△PGC是直角三角形.
(1)解:如图所示,此时△ABP绕点B顺时针旋转了90°;
(2)证明:由已知可得:△ABP≌△CBG,
∴BP=BG,∠ABP=∠CBG,
CG=AP=1,
又∵在正方形ABCD中,∠ABC=90°,
即∠ABP+∠PBC=90°,
∴∠CBG+∠PBC=90°,
∴∠PBG=90°,
∴在Rt△PBG中,PG
2
=BP
2
+BG
2
=8,
又∵GC
2
=1
2
=1,PC
2
=3
2
=9,
∴PC
2
=PG
2
+GC
2
,
∴△PGC是直角三角形.
考点梳理
考点
分析
点评
旋转的性质;勾股定理的逆定理;正方形的性质.
(1)根据旋转中心,旋转方向,旋转后的位置,画出图形,求出旋转角度数;
(2)由旋转的性质可得可得:△ABP≌△CBG,旋转角∠PBG=90°,BP=BG=2,先求PG,在△PCG中,已知PC=3,CG=AP=1,利用勾股定理的逆定理证明△PGC是直角三角形.
本题考查了旋转的性质--旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;以及勾股定理的逆定理的运用.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )