试题
题目:
如图①,正方形ABCD中,∠FOE=90°,顶点O与D点重合,交直线BC于E,交直线BA于F.
(1)求证:OF=OE;
(2)如图②,若O点在射线BD上运动,其它条件不变,上述结论是否仍然成立?画出图形,直接写出结论;
(3)如图③,O为正方形ABCD对角线的中点,∠FOE=90°且绕点O旋转,交BC、CD边于F、E点.(1)中的结论是否仍然成立?请说明理由.
答案
解:(1)∵∠EDC=∠FDA,∠C=∠FAD,OC=OA,
∴△OEC≌△OFA,
∴OF=OE.(3分)
(2)OF=OE仍然成立.(4分)
如图:作OH⊥AF,OG⊥EC,
根据旋转不变性可知,∠FOH=∠EOG,
易得,OH=OG,
又∵∠FHO=∠GEO,
∴△FHO≌△EGO,
∴OF=OE.(6分)
(3)作OM⊥BC于M,ON⊥CD于N,
∴∠OMF=∠ONE,OM=ON=
1
2
CD,∠MOF=∠NOE=90°-∠FON,
∴△OMF≌△ONE,
∴OF=OE.(10分)
解:(1)∵∠EDC=∠FDA,∠C=∠FAD,OC=OA,
∴△OEC≌△OFA,
∴OF=OE.(3分)
(2)OF=OE仍然成立.(4分)
如图:作OH⊥AF,OG⊥EC,
根据旋转不变性可知,∠FOH=∠EOG,
易得,OH=OG,
又∵∠FHO=∠GEO,
∴△FHO≌△EGO,
∴OF=OE.(6分)
(3)作OM⊥BC于M,ON⊥CD于N,
∴∠OMF=∠ONE,OM=ON=
1
2
CD,∠MOF=∠NOE=90°-∠FON,
∴△OMF≌△ONE,
∴OF=OE.(10分)
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;旋转的性质.
(1)由于旋转后角不变,根据ASA证明;
(2)证明方法同(1);
(3)作辅助线构造直角三角形.
此题利用了角的旋转不变性,无论怎样转,直角三角形的度数不变,可以以此利用三角形全等来证明.
证明题;动点型.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )