答案
解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;
(2)线段BF和DE的数量关系是相等.理由如下:
∵四边形ABCD为正方形,
∴AB=AD,∠BAF=∠EAD,
∵F是AD的中点,AE=
AB,
∴AE=AF,
∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,
∴BF与DE为对应线段,
∴BF=DE.
解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;
(2)线段BF和DE的数量关系是相等.理由如下:
∵四边形ABCD为正方形,
∴AB=AD,∠BAF=∠EAD,
∵F是AD的中点,AE=
AB,
∴AE=AF,
∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,
∴BF与DE为对应线段,
∴BF=DE.