试题
题目:
如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是( )
A.BE+DF=EF
B.BE+DF>EF
C.BE+DF∠EF
D.无法确定
答案
A
BE+DF与EF的关系是:BE+DF=EF.
证明:延长EB至H,使BH=DF,连接AH,
∵在正方形ABCD中,
∴∠ADF=∠ABH,AD=AB,
在△ADF和△ABH中,
∵
AD=AB
∠ADF=∠ABH
DF=HB
∴△ADF≌△ABH(SAS),
∴∠BAH=∠DAF,AF=AH,
∴∠FAH=90°,
∴∠EAF=EAH=45°,
在△FAE和△HAE中,
∵
AF=AH
∠FAE=∠EAH
AE=AE
,
∴△FAE≌△HAE(SAS),
∴EF=HE=BE+HB,
∴EF=BE+DF.
故选:A.
考点梳理
考点
分析
点评
旋转的性质;全等三角形的判定与性质;正方形的性质.
延长EB至H,使BH=DF,连接AH,证△ADF≌△ABH,△FAE≌△HAE,根据全等三角形的性质得出EF=HE=BE+HB进而求出即可.
本题主要考查了旋转的性质和正方形的性质、全等三角形的判定的综合应用.作出辅助线延长EB至H,使BH=DF,利用全等三角形性质与判定求出是解题关键.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )