试题
题目:
如图,梯形ABCD中,AD∥BC,AB=CD,AD=5,BC=8.将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则△ADE的面积( )
A.4
B.
15
4
C.
15
2
D.20
答案
B
解:如图,过E作EF⊥AD的延长线于F,过D作DM⊥BC于M,过A作AN⊥CB于N,
∵将腰DC绕点D逆时针方向旋转90°至DE,
∴DE=DC,
而EF⊥AD的延长线于F,DM⊥BC于M,AD∥BC,
∴∠EFD=∠DMC=∠MDF=∠CDE=90°,
∴∠EDF=∠MDC,
∴△EDF≌△CDM,
∴EF=MC,
而梯形ABCD中,AD∥BC,AB=CD,AD=5,BC=8,
∴CM=BN=1.5,
∴S
△ADE
=
1
2
×AD×DE=
15
4
.
故选B.
考点梳理
考点
分析
点评
专题
旋转的性质;等腰梯形的性质.
如图,过E作EF⊥AD的延长线于F,过D作DM⊥BC于M,由于将梯形的腰DC绕点D逆时针方向旋转90°至DE,所以得到EF=CM,而根据等腰梯形的性质和已知条件可以求出DM的长度,也就求出EF的长度,最后利用三角形的面积公式即可解决问题.
此题主要考查了旋转的定义和性质,也考查了等腰梯形的性质,解题的关键是作辅助线,把所求面积问题转化为求CM的长度即可解决问题.
计算题;证明题.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )