试题
题目:
如图所示,已知P为正方形ABCD外的一点.PA=1,PB=2.将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,求∠BP′C的度数.
答案
解:连接PP′,
∵△ABP绕点B顺时针旋转90°,使点P旋转至点P′,
∴P′B=PB=2,∠PBP′=90°,
∴PP′=
P
B
2
+P′
B
2
=2
2
,∠BPP′=45°,
∵PA=1,AP′=3,
∴PA
2
+PP′
2
=AP′
2
,
∴∠APP′=90°,
∴∠APB=∠APP′+∠BPP′=135°,
∴∠BP′C=∠APB=135°.
解:连接PP′,
∵△ABP绕点B顺时针旋转90°,使点P旋转至点P′,
∴P′B=PB=2,∠PBP′=90°,
∴PP′=
P
B
2
+P′
B
2
=2
2
,∠BPP′=45°,
∵PA=1,AP′=3,
∴PA
2
+PP′
2
=AP′
2
,
∴∠APP′=90°,
∴∠APB=∠APP′+∠BPP′=135°,
∴∠BP′C=∠APB=135°.
考点梳理
考点
分析
点评
旋转的性质;勾股定理的逆定理;正方形的性质.
首先连接PP′,由旋转的性质,可求得PP′的长,∠BPP′=45°,然后由勾股定理的逆定理,证得∠APP′=90°,继而求得答案.
此题考查了旋转的性质、等腰直角三角形的性质以及勾股定理的逆定理.此题难度适中,注意掌握辅助线的作法,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )