试题

题目:
青果学院已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上(  )



答案
C
解:过F作BC的垂线,交BC延长线于N点,
∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,
∴∠DEC=∠EFN,
∴Rt△FNE∽Rt△ECD,
∵DE的中点G,EG绕E顺时针旋转90°得EF,青果学院
∴两三角形相似比为1:2,
∴可以得到CE=2NF,NE=
1
2
CD=2.5.
∵AC平分正方形直角,
∴∠NFC=45°,
∴△CNF是等腰直角三角形,
∴CN=NF,
∴CE=
2
3
NE=
2
3
×
5
2
=
5
3

故选:C.
考点梳理
旋转的性质;正方形的性质.
首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出NE=
1
2
CD=2.5,运用正方形性质得出△CNF是等腰直角三角形,从而求出CE.
此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.
数形结合.
找相似题