试题

题目:
青果学院如图,在等边△ABC中,D为三角形内一点,且BD=3,DA=4,DC=5.将△BDA绕点B沿顺时针旋转60°,使D到D′,则∠BD′C的度数为(  )



答案
B
青果学院解:连接DD′.
∵将△BDA绕点B沿顺时针旋转60°,使D到D′,
∴∠DBD′=60°,BD=BD′,DA=D′C=4,
∴△BDD′是等边三角形,
∴∠BD′D=60°,DD′=BD=3,
∵D′C=4,CD=5,
∴DD′2+D′C2=CD2
∴∠CD′D=90°,
∴∠BD′C=∠BD′D+∠CD′D=60°+90°=150°.
故选B.
考点梳理
旋转的性质;等边三角形的判定与性质;勾股定理的逆定理.
连接DD′,先根据旋转的性质得出∠DBD′=60°,BD=BD′,DA=D′C=4,由等边三角形的判定可知△BDD′是等边三角形,则∠BD′D=60°,DD′=BD=3,再根据勾股定理的逆定理得出∠CD′D=90°,从而求出∠BD′C的度数.
本题考查了旋转的性质,等边三角形的判定与性质,勾股定理的逆定理,难度中等,通过作辅助线,得到△BDD′是等边三角形是解题的关键.
找相似题