试题
题目:
如图,在等边△ABC中,D为三角形内一点,且BD=3,DA=4,DC=5.将△BDA绕点B沿顺时针旋转60°,使D到D′,则∠BD′C的度数为( )
A.120°
B.150°
C.90°
D.105°
答案
B
解:连接DD′.
∵将△BDA绕点B沿顺时针旋转60°,使D到D′,
∴∠DBD′=60°,BD=BD′,DA=D′C=4,
∴△BDD′是等边三角形,
∴∠BD′D=60°,DD′=BD=3,
∵D′C=4,CD=5,
∴DD′
2
+D′C
2
=CD
2
,
∴∠CD′D=90°,
∴∠BD′C=∠BD′D+∠CD′D=60°+90°=150°.
故选B.
考点梳理
考点
分析
点评
旋转的性质;等边三角形的判定与性质;勾股定理的逆定理.
连接DD′,先根据旋转的性质得出∠DBD′=60°,BD=BD′,DA=D′C=4,由等边三角形的判定可知△BDD′是等边三角形,则∠BD′D=60°,DD′=BD=3,再根据勾股定理的逆定理得出∠CD′D=90°,从而求出∠BD′C的度数.
本题考查了旋转的性质,等边三角形的判定与性质,勾股定理的逆定理,难度中等,通过作辅助线,得到△BDD′是等边三角形是解题的关键.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )