试题
题目:
如图,△ABC与△ADE是两个全等的等腰三角形,∠C=∠AED=90°,下列说法中正确的是( )
A.△ABC以A点为旋转中心,顺时针旋转90°与△ADE重合
B.△ABC以E点为旋转中心,逆时针旋转90°与△ADE重合
C.△ABC以A点为旋转中心,逆时针旋转45°与△ADE重合
D.△ABC以A点为旋转中心,逆时针旋转90°与△ADE重合
答案
C
解:∵△ABC与△ADE是两个全等的等腰三角形,∠C=∠AED=90°,
∴AC=BC=AE=DE,AD=AB,
∴∠DAE=∠BAC=45°,
∴△ABC以A点为旋转中心,逆时针旋转45°与△ADE重合,
∴C正确,A、B、D错误.
故选C.
考点梳理
考点
分析
点评
专题
旋转的性质.
先根据△ABC与△ADE是两个全等的等腰三角形,∠C=∠AED=90°可知AC=BC=AE=DE,AD=AB,再由图形旋转的性质进行解答即可.
本题考查的是旋转的性质及等腰直角三角形的性质,熟知图形旋转后所得图形与原图形全等是解答此题的关键.
探究型.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )