试题
题目:
如图,在矩形ABCD中,AC是对角线,将ABCD绕点B顺时针旋转90°到GBEF位置,H是EG的中点,若AB=6,BC=8,则线段CH的长为( )
A.
2
5
B.
21
C.
2
10
D.
41
答案
D
解:过点H作HM⊥BC于点M,
∵将ABCD绕点B顺时针旋转90°到GBEF位置,AB=6,BC=8,
∴BE=BC=8,∠CBE=90°,BG=AB=6,
∴HM∥BE,
∵H是EG的中点,
∴MH=
1
2
BE=4,BM=GM=
1
2
BG=3,
∴CM=BC-BM=8-3=5,
在Rt△CHM中,CH=
H
M
2
+C
M
2
=
41
.
故选D.
考点梳理
考点
分析
点评
旋转的性质;勾股定理;三角形中位线定理;矩形的性质.
首先过点H作HM⊥BC于点M,由将ABCD绕点B顺时针旋转90°到GBEF位置,AB=6,BC=8,可得BE=BC=8,∠CBE=90°,BG=AB=6,又由H是EG的中点,易得HM是△BEG的中位线,继而求得HM与CM的长,由勾股定理即可求得线段CH的长.
此题考查了旋转的性质、矩形的性质、三角形中位线的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )