试题
题目:
如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( )
A.4
B.
4
2
C.
4
3
D.3
答案
A
解:∵△ABC中,BC=8,AD是中线,
∴BD=DC=4,
∵将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,
∴∠C′DA=∠ADC=60°,DC=DC′,
∴∠C′DB=60°,
∴△BDC′是等边三角形,
∴BC′=BD=DC′=4.
故选A.
考点梳理
考点
分析
点评
旋转的性质;等边三角形的判定与性质.
首先利用折叠的性质,得出∠C′DA=∠ADC=60°,DC=DC′,再利用等边三角形的判定方法,有一个角是60°的等腰三角形是等边三角形,得出△BDC′是等边三角形,进而得出答案.
此题主要考查了图形的折叠问题与等边三角形的判定等知识,得出∠C′DA=∠ADC=60°,DC=DC′,是解决问题的关键.
找相似题
(2013·玉溪)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
(2013·梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )
(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
(2011·广元)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB
1
C
1
D
1
,边B
1
C
1
与CD交于点O,则四边形AB
1
OD的周长是( )
(2010·台湾)如图所示,将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转几度,可使得新五边形A′B′C′D′E的顶点D′落在直线BC上( )