试题
题目:
研究下列算式,你会发现什么规律?
1×3+1=4=2
2
2×4+1=9=3
2
3×5+1=16=4
2
4×6+1=25=5
2
…
(1)请你找出规律井计算7×9+1=
64
64
=(
8
8
)
2
(2)用含有n的式子表示上面的规律:
n(n+2)+1=(n+1)
2
n(n+2)+1=(n+1)
2
.
(3)用找到的规律解决下面的问题:
计算:
(1+
1
1×3
)(1+
1
2×4
)(1+
1
3×5
)(1+
1
4×6
)…(1+
1
9×11
)
=
20
11
20
11
.
答案
64
8
n(n+2)+1=(n+1)
2
20
11
解:(1)7×9+1=64=8
2
;
(2)上述算式有规律,可以用n表示为:n(n+2)+1=n
2
+2n+1=(n+1)
2
.
(3)原式=
2(9+1)
9+2
=
20
11
.
故答案为:64,8;n(n+2)+1=(n+1)
2
;
20
11
.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=8
2
;含有n的式子表示的规律.
(3)由(1+
1
1×3
)(1+
1
2×4
)=
2
1
×
2
3
×
3
2
×
3
4
知,
(1+
1
1×3
)(1+
1
2×4
)(1+
1
3×5
)(1+
1
4×6
)…(1+
1
9×11
)
+…+(1+
1
n(n+2)
)=
2(n+1)
n+2
,利用此规律计算.
本题考查了有理数的运算,是找规律题,找到
(1+
1
1×3
)(1+
1
2×4
)(1+
1
3×5
)(1+
1
4×6
)…(1+
1
9×11
)
+…+(1+
1
n(n+2)
)=
2
1
×
2
3
×
3
2
×
3
4
×
4
3
×
4
5
×…×
n+1
n
×
n+1
n+2
=
2(n+1)
n+2
是解题的关键.
规律型.
找相似题
议一议,观察下面一列数,探求其规律:
-1,
1
2
,-
1
3
,
1
4
,-
1
5
,
1
6
…
(1)填出第7,8,9三个数;
-
1
7
-
1
7
,
1
8
1
8
,
-
1
9
-
1
9
.
(2)第2013个数是什么?如果这一列数无限排列下去,与哪个数越来越接近?
观察下面一列数,探究其中的规律:
-1,
1
2
,-
1
3
,
1
4
,-
1
5
,
1
6
(1)填空:第11,12,13三个数分别是
1
12
1
12
,
-
1
13
-
1
13
,
1
14
1
14
;
(2)第2008个数是
1
2008
1
2008
(3)如果这列数按此规律无限排列下去,与
0
0
越来越接近.
观察等式:
①9-1=8×4
②85-1=4×6
③49-1=6×8
④81-1=8×10&n8sp;…
按照此规律写出第n个等式,并用所学过r知识验证它r正确性.
有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n(n是正整数)来表示.有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…
(1)它的每一项你认为可用怎样的式子来表示?
(2)它的第100个数是多少?
(3)2011是不是这列数中的数?如果是,是第几个数?
观察下列等式:
3
2
-1
2
=4×2
4
2
-2
2
=4×3
5
2
-3
2
=4×4
…
(1)请写出第8个等式.
(2)你发现有什么规律?请用含有n(n≥1的整数)的等式表示你发现的规律.