试题

题目:
观察与思考:
2
2
3
=
2
2
3
3
3
8
=
3
3
8
4
4
15
=
4
4
15

式①验证:2
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2
2
3

式②验证:3
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3
3
8

(1)仿照上述式①、式②的验证过程,请写出式③的验证过程;
(2)猜想
5
5
24
=
5
5
24
5
5
24

(3)试用含n(n为自然数,且n≥2)的等式表示这一规律,并加以验证.
答案
5
5
24

解:(1)4
4
15
=
43
15
=
(43-4)+4
42-1
=
4(42-1)+4
42-1
=
4
4
15
(3分)

(2)
5
5
24
=5
5
24
(6分)

(3)n
n
n2-1
=
n+
n
n2-1
(11分)
n
n
n2-1
=
n3
n2-1
=
n3-n+n
n2-1
=
n(n2-1)+n
n2-1
=
n+
n
n2-1
(14分)
考点梳理
规律型:数字的变化类.
观察规律可知n
n
n2-1
=
n+
n
n2-1
,并且互逆.
本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找到n
n
n2-1
=
n3
n2-1
=
n3-n+n
n2-1
=
n(n2-1)+n
n2-1
=
n+
n
n2-1
规律型.
找相似题