试题

题目:
观察下列等式;
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
将以上三个等式两边分别相加得;
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)计算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010

(3)计算
1
2
+
1
6
+
1
12
+
1
20
+…+
1
90

(4)计算
1
4
+
1
12
+
1
24
+
1
40
+…+
1
180

答案
1
n
-
1
n+1

解:(1)
1
n
-
1
n+1
(2分)
(2)原式=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2009
-
1
2010

=1-
1
2010

=
2009
2010
(6分)
(3)原式=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10

=1-
1
10

=
9
10
(10分)
(4)原式=
1
2
×
1
2
+
1
2
×
1
6
+
1
2
×
1
12
+…+
1
2
×
1
90

=
1
2
1
2
+
1
6
+
1
12
+
1
20
+…+
1
90

=
1
2
×
9
10

=
9
20
(14分)
考点梳理
规律型:数字的变化类.
(1)由规律得
1
n(n+1)
=
1
n
-
1
n+1

(2)由(1)的规律,分别将每一个式子写成两个分数差的形式,再计算;
(3)逆用规律,再计算;
(4)根据
1
4
+
1
12
+
1
24
+
1
40
+…+
1
180
=
1
2
1
2
+
1
6
+
1
12
+
1
20
+…+
1
90
)计算即可.
本题考查了利用规律解题,解决此题的关键是题目给出的规律:
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
规律型.
找相似题