试题

题目:
已知一组数据x1,x2,x3,…,xn的平均数是
.
x
,方差是S2,设另一组数据x′1=ax1+b,x′2=ax2+b,x′3=ax3+b,…,x′n=axn+b的平均数是
.
x
′,方差是S′2.请说明以下等式成立的理由:
(1)
.
x
′=a
.
x
+b;(2)S′2=a2S2
答案
解:(1)
.
x
=
1
n
(x′1+x′2+…+x′n),
=
1
n
[(ax1+b)+(ax2+b)+…+(axn+b)],
=
1
n
[a(x1+x2+…+xn)+nb],
=a
.
x
+b

(2)S′2=
1
n
[(x′1-
.
x′
2+(x′2-
.
x′
2+…+(x′n-
.
x′
2],
=
1
n
[(ax1+b-a
.
x
-b)2+(ax2+b-a
.
x
-b)2+…+(axn+b-a
.
x
-b)2],
=
1
n
[a2(x1-
.
x
2+a2(x2-
.
x
2+…+a2(xn-
.
x
2],
=a2S2
解:(1)
.
x
=
1
n
(x′1+x′2+…+x′n),
=
1
n
[(ax1+b)+(ax2+b)+…+(axn+b)],
=
1
n
[a(x1+x2+…+xn)+nb],
=a
.
x
+b

(2)S′2=
1
n
[(x′1-
.
x′
2+(x′2-
.
x′
2+…+(x′n-
.
x′
2],
=
1
n
[(ax1+b-a
.
x
-b)2+(ax2+b-a
.
x
-b)2+…+(axn+b-a
.
x
-b)2],
=
1
n
[a2(x1-
.
x
2+a2(x2-
.
x
2+…+a2(xn-
.
x
2],
=a2S2
考点梳理
方差;算术平均数.
(1)根据平均数的计算公式,进行推导即可;
(2)根据方差公式S2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]推到即可.
本题考查了平均数和方差.平均数的定义:
.
x
=
1
n
(x1+x2+…+xn)

方差的定义:S2=
1
n
(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2
证明题.
找相似题