试题

题目:
青果学院已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.
(1)如图①,当∠BOC=70°时,求∠DOE的度数;
(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数.
答案
解:(1)∵OD、OE分别平分∠AOC和∠BOC,
∴∠COE=
1
2
∠COB=35°,∠COD=
1
2
∠AOC=10°,
∴∠DOE=∠COE+∠COD45°;

(2)∠DOE的大小不变等于45°,
理由:∠DOE=∠DOC+∠COE=
1
2
∠COB+
1
2
∠AOC
=
1
2
(∠COB+∠AOC)
=
1
2
∠AOB=45°.
解:(1)∵OD、OE分别平分∠AOC和∠BOC,
∴∠COE=
1
2
∠COB=35°,∠COD=
1
2
∠AOC=10°,
∴∠DOE=∠COE+∠COD45°;

(2)∠DOE的大小不变等于45°,
理由:∠DOE=∠DOC+∠COE=
1
2
∠COB+
1
2
∠AOC
=
1
2
(∠COB+∠AOC)
=
1
2
∠AOB=45°.
考点梳理
角的计算;角平分线的定义.
(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;
(2)结合角的特点,∠DOE=∠DOC+∠COE,求得结果进行判断和计算.
此题考查角的计算与角平分线的意义,熟记角的特点与角平分线的定义是解决此题的关键.
找相似题