试题
题目:
已知∠AOD=α,OB、OC、OM、ON是∠AOD内的射线.
(1)如图1,当α=160°,若OM平分∠AOB,ON平分∠BOD,求∠MON的大小;
(2)如图2,若OM平分∠AOC,ON平分∠BOD,∠BOC=20°,∠MON=60°,求α.
答案
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=
1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=
1
2
(∠AOB+∠BOD),
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=
1
2
×160°=80°;
(2)设∠AOB=x,则∠BOD=α-x,
∵OM平分∠AOC,ON平分∠BOD,
∴∠COM=
1
2
∠AOC=
1
2
(x+20°),∠BON=
1
2
∠BOD=
1
2
(α-x),
∴∠MON=∠COM+∠BON-∠BOC=
1
2
(x+20°)+
1
2
(α-x)-20°=
1
2
α-10°,
∵∠MON=60°,
∴
1
2
α-10°=60°,
解得α=140°.
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=
1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=
1
2
(∠AOB+∠BOD),
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=
1
2
×160°=80°;
(2)设∠AOB=x,则∠BOD=α-x,
∵OM平分∠AOC,ON平分∠BOD,
∴∠COM=
1
2
∠AOC=
1
2
(x+20°),∠BON=
1
2
∠BOD=
1
2
(α-x),
∴∠MON=∠COM+∠BON-∠BOC=
1
2
(x+20°)+
1
2
(α-x)-20°=
1
2
α-10°,
∵∠MON=60°,
∴
1
2
α-10°=60°,
解得α=140°.
考点梳理
考点
分析
点评
角的计算;角平分线的定义.
(1)根据角平分线的定义求出∠BOM和∠BON,然后根据∠MON=∠BOM+∠BON代入数据进行计算即可得解;
(2)设∠AOB=x,表示出∠BOD=α-x,根据角平分线的定义表示出∠COM和∠BON,然后根据∠MON=∠COM+∠BON-∠BOC列式计算即可得解.
本题考查了角的计算,角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.
找相似题
(2005·三明)一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)( )
(2005·河南)如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列可以求出这两个角的度数的方程组是( )
(2004·南山区)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x,y,那么下面的方程组正确的是( )
如图,这是小明设计的一幅图形,图中∠AOB的度数是( )
如图,将两块直角5角尺的直角顶点O叠放在一起,若∠1OD=三3l°,则∠BOC的度数为( )