试题
题目:
如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.
答案
解:∵∠EOD=28°46′,OD平分∠COE,
∴∠COD=∠EOD=28°46′,
∵∠AOB=40°,
∴∠COB=180°-∠AOB-∠EOD-∠COD,
=180°-40°-28°46′-28°46′,
=82°28′.
故答案为:82°28′.
解:∵∠EOD=28°46′,OD平分∠COE,
∴∠COD=∠EOD=28°46′,
∵∠AOB=40°,
∴∠COB=180°-∠AOB-∠EOD-∠COD,
=180°-40°-28°46′-28°46′,
=82°28′.
故答案为:82°28′.
考点梳理
考点
分析
点评
专题
角的计算.
根据角平分线的定义∠COD=∠EOD,所以∠COB的度数等于180°-∠AOB-∠EOD-∠COD,然后代入数据计算即可.
本题主要考查角的度数的运算,读懂图形分清角的和差关系比较重要,还要注意角是60进制,这也是同学们容易出错的地方.
计算题.
找相似题
(2005·三明)一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)( )
(2005·河南)如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列可以求出这两个角的度数的方程组是( )
(2004·南山区)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x,y,那么下面的方程组正确的是( )
如图,这是小明设计的一幅图形,图中∠AOB的度数是( )
如图,将两块直角5角尺的直角顶点O叠放在一起,若∠1OD=三3l°,则∠BOC的度数为( )