试题
题目:
下列说法正确的是( )
A.有理数的绝对值一定大于0
B.一个数的平方为l6,则这个数为4
C.如果∠AOC=
1
2
∠AOB,那么OC是∠AOB的平分线
D.已知A、B、C三个不同点,过其中每两点画直线,可以画出1条或3条直线
答案
D
解:A、0的绝对值为0,所以A选项错误;
B、一个数的平方为l6,则这个数为4或-4,所以B选项错误;
C、如果∠AOC=
1
2
∠AOB,并且OC在∠AOB内部,那么OC是∠AOB的平分线,所以C选项错误;
D、已知A、B、C三个不同点,过其中每两点画直线,可以画出1条或3条直线,所以D选项正确.
故选D.
考点梳理
考点
分析
点评
专题
绝对值;有理数的乘方;直线、射线、线段;角平分线的定义.
利用0的绝对值为0可对A进行判断;根据平方根的定义可对B进行判断;根据角平分线的定义对C进行判断;根据两点确定一条直线对D进行判断.
本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.也考查了分类讨论的思想运用.
分类讨论.
找相似题
(2003·娄底)如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD等于( )
在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB和∠BOC的平分线,则∠MON的度数是
30°或50°
30°或50°
.
如图,已知OC平分∠AOE,OB平分∠AOC,OD平分∠COE,则图中度数等于∠1度数的2倍的角共有
3
3
个.
如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°,OD平分∠COE,则
∠COB=
84
84
度.
若∠AOB=40°,∠BOC=20°,且OM平分∠BOC,则∠AOM的度数是
30°或50°
30°或50°
.