试题

题目:
青果学院如图,已知直线AB、CD交于点O,OE平分∠BOC,∠COE:∠COA=3:2,求∠AOD的度数.
答案
解:∵∠COE:∠COA=3:2,
∴可设∠COE=3x,∠COA=2x,
又∵OE平分∠BOC,
∴∠BOC=6x,6x+2x=180°,x=22.5°,
∴∠AOD=180°-2x=135°.
∴∠AOD的度数是135°.
故答案为135°.
解:∵∠COE:∠COA=3:2,
∴可设∠COE=3x,∠COA=2x,
又∵OE平分∠BOC,
∴∠BOC=6x,6x+2x=180°,x=22.5°,
∴∠AOD=180°-2x=135°.
∴∠AOD的度数是135°.
故答案为135°.
考点梳理
角平分线的定义.
首先根据题意设∠COE=3x,∠COA=2x.然后根据已知条件用未知数表示出一对邻补角,列方程进行求解.
此类题用设未知数的方法,可以使思路清晰.
计算题.
找相似题