试题
题目:
2002年8月在北京召开的第24届国际数学家大会会标图案如图所示.
(1)它可以看作由四个边长为a、b、c的直角三角形拼成,请从面积关系出发,写出一个a、b、c的等式.(要有过程)
(2)请用四个边长为a、b、c的直角三角形拼出另一个图形验证(1)中所写的等式,并写出验证过程.
(3)如果a+b=7,ab=12,求c的值.
答案
解:(1)根据题意,中间小正方形的面积
(b-a)
2
=
c
2
-4×
1
2
ba
;
化简得a
2
+b
2
=c
2
,
即在直角三角形中斜边的平方等于两直角边的平方和.
(2)如图所示:
由图可得
(a+b
)
2
=
c
2
+4×
1
2
ab
.
所以a
2
+b
2
=c
2
.
(3)c
2
=a
2
+b
2
=(a+b)
2
-2ab=49-24=25,
∴c=5.
解:(1)根据题意,中间小正方形的面积
(b-a)
2
=
c
2
-4×
1
2
ba
;
化简得a
2
+b
2
=c
2
,
即在直角三角形中斜边的平方等于两直角边的平方和.
(2)如图所示:
由图可得
(a+b
)
2
=
c
2
+4×
1
2
ab
.
所以a
2
+b
2
=c
2
.
(3)c
2
=a
2
+b
2
=(a+b)
2
-2ab=49-24=25,
∴c=5.
考点梳理
考点
分析
点评
专题
勾股定理的应用;勾股定理的证明.
(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.
(2)通过组合正方形的面积之间相等的关系即可证明勾股定理.
(3)将a
2
+b
2
变形为(a+b)
2
-2ab,即可求出c的值.
本题考查了学生对勾股定理的证明和应用,解题关键是对三角形、正方形面积公式的熟练掌握和运用.
应用题;证明题.
找相似题
勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=2,AC=3,则D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)
2
的值是( )
历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是( )
勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为
440
440
.