试题
题目:
(2006·浙江)已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.求证:∠P=90°.
答案
证明:∵AB∥CD,
∴∠BEF+∠DFE=180°.
又∵∠BEF的平分线与∠DFE的平分线相交于点P,
∴∠PEF=
1
2
∠BEF,∠PFE=
1
2
∠DFE,
∴∠PEF+∠PFE=
1
2
(∠BEF+∠DFE)=90°.
∵∠PEF+∠PFE+∠P=180°,
∴∠P=90°.
证明:∵AB∥CD,
∴∠BEF+∠DFE=180°.
又∵∠BEF的平分线与∠DFE的平分线相交于点P,
∴∠PEF=
1
2
∠BEF,∠PFE=
1
2
∠DFE,
∴∠PEF+∠PFE=
1
2
(∠BEF+∠DFE)=90°.
∵∠PEF+∠PFE+∠P=180°,
∴∠P=90°.
考点梳理
考点
分析
点评
专题
三角形内角和定理;平行线的性质.
由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得∠P=90度.
考查综合运用平行线的性质、角平分线的定义、三角形内角和等知识解决问题的能力.
证明题.
找相似题
(2013·东营)如图,已知AB∥CD,AD和BC相交于点O,∠A=50°,∠AOB=105°,则∠C等于( )
(2012·云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )
(2011·日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为( )
(2011·河池)如图,AB∥CD,AC与BD相交于点O,∠A=30°,∠COD=105°.则∠D的大小是( )
(2010·济宁)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )