试题
题目:
(2011·乐山)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.
答案
解:∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,
∴∠DAE=
1
2
∠CAB=
1
2
(90°-∠B),
∵DE垂直平分AB,
∴AD=BD,
∴∠DAE=∠B,
∴∠DAE=
1
2
∠CAB=
1
2
(90°-∠B)=∠B,
∴3∠B=90°,
∴∠B=30°.
答:若DE垂直平分AB,∠B的度数为30°.
解:∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,
∴∠DAE=
1
2
∠CAB=
1
2
(90°-∠B),
∵DE垂直平分AB,
∴AD=BD,
∴∠DAE=∠B,
∴∠DAE=
1
2
∠CAB=
1
2
(90°-∠B)=∠B,
∴3∠B=90°,
∴∠B=30°.
答:若DE垂直平分AB,∠B的度数为30°.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;三角形内角和定理;角平分线的性质.
根据DE垂直平分AB,求证∠DAE=∠B,再利用角平分线的性质和三角形内角和定理,即可求得∠B的度数.
此题本题考查的知识点为线段垂直平分线的性质,角平分线的性质,三角形内角和定理等知识点,比较简单,适合学生的训练.
计算题;压轴题.
找相似题
(2013·东营)如图,已知AB∥CD,AD和BC相交于点O,∠A=50°,∠AOB=105°,则∠C等于( )
(2012·云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )
(2011·日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为( )
(2011·河池)如图,AB∥CD,AC与BD相交于点O,∠A=30°,∠COD=105°.则∠D的大小是( )
(2010·济宁)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )