答案
解:(1)∵在△ABC中,∠B=80°,∠C=40°,
∴∠BAC=180°-80°-40°=60°,
∵AD平分∠BAC,
∴∠DAE=
∠BAC=30°;
(2)∠EDF=
(∠C-∠DAC).理由如下:
在△DAC中,∵∠ADC+∠DAC+∠C=180°,
∴∠ADC=180°-∠DAC-∠C,
∵DF平分∠ADC,
∴∠CDF=
∠ADC=
(180°-∠DAC-∠C),
∵DE是△ADC的高,
∴∠CDE=90°-∠C,
∴∠EDF=∠CDF-∠CDE=
(180°-∠DAC-∠C)-(90°-∠C)=
(∠C-∠DAC).
故∠EDF=
(∠C-∠DAC).
解:(1)∵在△ABC中,∠B=80°,∠C=40°,
∴∠BAC=180°-80°-40°=60°,
∵AD平分∠BAC,
∴∠DAE=
∠BAC=30°;
(2)∠EDF=
(∠C-∠DAC).理由如下:
在△DAC中,∵∠ADC+∠DAC+∠C=180°,
∴∠ADC=180°-∠DAC-∠C,
∵DF平分∠ADC,
∴∠CDF=
∠ADC=
(180°-∠DAC-∠C),
∵DE是△ADC的高,
∴∠CDE=90°-∠C,
∴∠EDF=∠CDF-∠CDE=
(180°-∠DAC-∠C)-(90°-∠C)=
(∠C-∠DAC).
故∠EDF=
(∠C-∠DAC).