试题

题目:
青果学院在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.
答案
解:∵AD是高,∠C=60°,
∴∠CAD=90°-∠C=90°-60°=30°;

∵∠B=20°,∠C=60°,
∴∠BAC=180°-∠B-∠C=180°-20°-60°=100°,
∵AE是角平分线,
∴∠CAE=
1
2
∠BAC=
1
2
×100°=50°,
∴∠DAE=∠CAE-∠CAD=50°-30°=20°.
解:∵AD是高,∠C=60°,
∴∠CAD=90°-∠C=90°-60°=30°;

∵∠B=20°,∠C=60°,
∴∠BAC=180°-∠B-∠C=180°-20°-60°=100°,
∵AE是角平分线,
∴∠CAE=
1
2
∠BAC=
1
2
×100°=50°,
∴∠DAE=∠CAE-∠CAD=50°-30°=20°.
考点梳理
三角形的角平分线、中线和高;三角形内角和定理.
在Rt△ACD中,利用直角三角形两锐角互余列式计算即可求出∠CAD;
根据三角形的内角和等于180°列式求出∠BAC,再根据角平分线的定义求出∠CAE,然后列式计算即可求出∠DAE.
本题考查了三角形的高线,角平分线,主要利用了三角形的内角和定理,熟记高线,角平分线的定义并利用好是解题的关键.
找相似题