试题
题目:
将自然数按下列三角形规律排列,则第10行的各数之和是
1729
1729
.
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
…
答案
1729
解:观察得:第一行有1个数,第二行有3个数,第三行有5个数,
∴第n行有2n-1个数,
∴第9行有17个数,第10行有19个数,
第10行的第一个数为:1+3+5+…+17+1=82,
第10行的最后一个数为:82+18=100,
∴第10行的各数之和是:82+83+…+100=1729.
故答案为:1729.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
观察归纳可得:第n行有2n-1个数,即可求得第9行有17个数,第10行有19个数,继而求得第10行的第一个数与第10行的最后一个数,则可求得第10行的各数之和.
此题考查了数字变化类问题,考查了学生观察归纳能力.此题难度适中,解题的关键是找到规律:第n行有2n-1个数.
规律型.
找相似题
观察下面的几个算式:
13×17=221可写成100×1×(1+1)+21;
23×27=621可写成100×2×(2+1)+21;
33×37=1221可写成100×3×(3+1)+21;
43×47=2021可写成100×4×(4+1)+21;
…
根据上面规律填空:
(1)83×87可写成
100×8×(8+1)+21
100×8×(8+1)+21
.
(2)(10n+3)(10n+7)可写成
100n(n+1)+21
100n(n+1)+21
.
(3)计算:1993×1997=
3980021
3980021
.
张老师设计了一个计算程序,输入和输出的数据如下表:
输入
数据
1
2
3
4
…
输出
数据
1
2
1
4
1
8
1
16
…
那么,当输入数据是6时,输出的数据是
1
64
1
64
.
一组按规律排列的数:
9
5
,
16
12
,
25
21
,
36
32
,…请推断第n个数是
(n+2
)
2
n
2
+4n
(n+2
)
2
n
2
+4n
.
观察下列各式:①4=2
2
;②4+12=4
2
;③4+12+20=6
2
;④4+12+20+28=8
2
;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)
2
4+12+20+28+36+…+(2n-1)×4=(2n)
2
.
观察下列:1×3=3而3=2
2
-1,3×5=15而15=4
2
-1,5×7=35而35=6
2
-1,…,11×13=143而143=12
2
-1.你猜想到的规律用只含一个字母n的式子表示出来是
n(n+2)=(n+1)
2
-1
n(n+2)=(n+1)
2
-1
.