试题

题目:
观察下列各式:①4=22;②4+12=42;③4+12+20=62;④4+12+20+28=82;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)2
4+12+20+28+36+…+(2n-1)×4=(2n)2

答案
4+12+20+28+36+…+(2n-1)×4=(2n)2

解:∵①4=22
②4+12=42
③4+12+20=62
④4+12+20+28=82
那么⑤为4×1+3×4+5×4+7×4+9×4=102
∴第n个等式为4+12+20+28+36+…+(2n-1)×4=(2n)2
考点梳理
规律型:数字的变化类.
由于:①4=22;②4+12=42;③4+12+20=62;④4+12+20+28=82,那么⑤为4×1+3×4+5×4+7×4+9×4=102,利用这个规律即可求解.
此题主要考查了数字的变化规律,解题的关键是观察题目隐含的规律,然后利用规律即可解决问题.
计算题.
找相似题