试题
题目:
观察下列单项式:x,-3x
2
,5x
3
,-7x
4
,9x
5
…,按此规律,第n个单项式表示为
(-1)
n+1
(2n-1)x
n
(不唯一)
(-1)
n+1
(2n-1)x
n
(不唯一)
.
答案
(-1)
n+1
(2n-1)x
n
(不唯一)
解:第n个单项式的符号可用(-1)
n+1
表示;
第n个单项式的系数可用(2n-1)表示;
第n个单项式除系数外可表示为x
n
.
∴第n个单项式表示为(-1)
n+1
(2n-1)x
n
(不唯一),
故答案为(-1)
n+1
(2n-1)x
n
(不唯一).
考点梳理
考点
分析
点评
专题
规律型:数字的变化类;单项式.
第奇数个单项式系数的符号为正,第偶数个单项式的符号为负,那么第n个单项式可用(-1)
n+1
表示,第一个单项式的系数的绝对值为1,第2个单项式的系数的绝对值为3,那么第n个单项式的系数可用(2n-1)表示;第一个单项式除系数外可表示为x,第2个单项式除系数外可表示为x
2
,第n个单项式除系数外可表示为x
n
.
考查数字的变化规律;分别得到符号,系数等的规律是解决本题的关键;得到各个单项式的符号规律是解决本题的易错点.
规律型.
找相似题
观察下面的几个算式:
13×17=221可写成100×1×(1+1)+21;
23×27=621可写成100×2×(2+1)+21;
33×37=1221可写成100×3×(3+1)+21;
43×47=2021可写成100×4×(4+1)+21;
…
根据上面规律填空:
(1)83×87可写成
100×8×(8+1)+21
100×8×(8+1)+21
.
(2)(10n+3)(10n+7)可写成
100n(n+1)+21
100n(n+1)+21
.
(3)计算:1993×1997=
3980021
3980021
.
张老师设计了一个计算程序,输入和输出的数据如下表:
输入
数据
1
2
3
4
…
输出
数据
1
2
1
4
1
8
1
16
…
那么,当输入数据是6时,输出的数据是
1
64
1
64
.
一组按规律排列的数:
9
5
,
16
12
,
25
21
,
36
32
,…请推断第n个数是
(n+2
)
2
n
2
+4n
(n+2
)
2
n
2
+4n
.
观察下列各式:①4=2
2
;②4+12=4
2
;③4+12+20=6
2
;④4+12+20+28=8
2
;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)
2
4+12+20+28+36+…+(2n-1)×4=(2n)
2
.
观察下列:1×3=3而3=2
2
-1,3×5=15而15=4
2
-1,5×7=35而35=6
2
-1,…,11×13=143而143=12
2
-1.你猜想到的规律用只含一个字母n的式子表示出来是
n(n+2)=(n+1)
2
-1
n(n+2)=(n+1)
2
-1
.