试题
题目:
从1开始将连续奇数相加,和的情况如下:
1=1=1
2
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
按此规律请你猜想从1开始,将10个连续奇数相加,和是
10
2
10
2
.
将n个从1开始的连续奇数相加,则它们的和是
n
2
n
2
.
答案
10
2
n
2
解:从1开始的连续2个奇数和是2
2
,连续3个奇数和是3
2
,连续4个,5个奇数和分别为4
2
,5
2
,…
由此猜想,从1开始的连续10个奇数和是10
2
;从1开始的连续n个奇数的和是n
2
.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
仔细观察给出的等式可发现从1开始连续两个奇数和是2
2
,连续3个奇数和是3
2
,连续4个,5个奇数和分别为4
2
,5
2
从而推出从1开始几个连续奇数和等于几的平方,根据此规律解题即可.
此题主要考查学生对规律型题的掌握,做此类题要先对给出的数据进行观察分析从而发现规律,根据规律解题.
规律型.
找相似题
观察下面的几个算式:
13×17=221可写成100×1×(1+1)+21;
23×27=621可写成100×2×(2+1)+21;
33×37=1221可写成100×3×(3+1)+21;
43×47=2021可写成100×4×(4+1)+21;
…
根据上面规律填空:
(1)83×87可写成
100×8×(8+1)+21
100×8×(8+1)+21
.
(2)(10n+3)(10n+7)可写成
100n(n+1)+21
100n(n+1)+21
.
(3)计算:1993×1997=
3980021
3980021
.
张老师设计了一个计算程序,输入和输出的数据如下表:
输入
数据
1
2
3
4
…
输出
数据
1
2
1
4
1
8
1
16
…
那么,当输入数据是6时,输出的数据是
1
64
1
64
.
一组按规律排列的数:
9
5
,
16
12
,
25
21
,
36
32
,…请推断第n个数是
(n+2
)
2
n
2
+4n
(n+2
)
2
n
2
+4n
.
观察下列各式:①4=2
2
;②4+12=4
2
;③4+12+20=6
2
;④4+12+20+28=8
2
;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)
2
4+12+20+28+36+…+(2n-1)×4=(2n)
2
.
观察下列:1×3=3而3=2
2
-1,3×5=15而15=4
2
-1,5×7=35而35=6
2
-1,…,11×13=143而143=12
2
-1.你猜想到的规律用只含一个字母n的式子表示出来是
n(n+2)=(n+1)
2
-1
n(n+2)=(n+1)
2
-1
.